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general applications. _
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CONVERSION TABLE
(This Conversion Table Is Unclassified)

angstrom 1.000 000 X E ~10 meters (m)
atmosphere (normal) 1.013 25 X E +2 kilo pascal (kPa)
bar 1.000 000 X E +2 kilo pascal (kPa)
barn 1.000 000 X E -28 meter2 (m2)
British thermal unit '

(thermochemical) 1.054 350 X E +3 joule (J)
calorie (thermochemical) 4,184 000 joule (J)
cal (thermochemical)/cm2 4.184 000 X E -2 mega joule/mz (MJ/m2)
curie 3.700 000 X E +1 *giga becquerel (GBq)
degree (angle) 1.745 329 X E -2 radian (rad)
degree Fahrenheit t, = (t°f + 459.67)/1.8 degree kelvin (K)
electron volt 1.602 19 X E -19 joule (J)
erg 1.000 000 X E -7 joulie (J)
erg/second 1.000 000 X E -7 watt (W)
foot 3.048 000 X E -1 meter (m),
foot-pound-force . 1.355 818 joule (J)
gallon (U.S. liquid) 3.785 412 X E -3 meter3 (m3)
inch 2.540 000 X E -2 meter (m)
jerk 1.000 000 X E +9 joule (J)
joule/kilogram (J/kg)

(radiation dose absorbed) 1.000 000 Gray (Gy)
kilotons 4.183 terajoules
kip (1000 1bf) 4,448 222 X E +3 newton (N)
kip/inch? (ksi) 6.894 757 X E +3 " kilo pascal (kPa)
ktap 1.000 000 X E +2 newton-second/m?2

(N-s/m2)
micron 1.000 000 X E -6 meter (m)
mil 2.540 000 X E -5 meter (m)
mile (international) 1.609 344 X E +3 meter (m)
ounce 2.834 952 X E -2 kilogram (kg)
pound-force (1bs aviordupois) 4.448 222 newton (N)
pound-force inch 1.129 848 X E -1 newton-meter (N'm)
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UNCLASSIFIED

CONVERSION TABLE (Concluded)

pound-force/inch 1.751 268 X E +2 newton/meter (N/m)

pound-force/foot? 4,788 026 X E -2 kilo pascal (kPa)

pound-force/inchz (psi) 6.894 757 kilo pascal (kPa)

pound-mass (1bm avoirdupois) 4.535 924 X E -1 kilogram (kg)

pound-mass-foot2 (moment

of inertial) 4.214 011 X E -2 kilogram-meter?
(kg*m2)

pound-mass/foot3 1.601 846 X E +1 kilogram/meter3
(kg/m3)

rad (radiation dose absorbed) 1.000 000 X E -2 **Gray (Gy)

roentgen 2.579 760 X E -4 coulomb/kilogram
(C/kg)

shake 1.000 000 X E -8 second (s)

slug 1.459 390 X E +1 kilogram (kg)

torr (mm Hg, 0°C) 1.333 22 X E -1 kilo pascal (kPa)

*fhe becquerel (Bq) is the SI unit of radicactivity; 1 Bq = 1 event/s.
**Tha Gray (Gy) is the SI unit of absorbed radiation - '
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SECTION 1
(This Section Is Unclassified)

INTRODUCTION
1.1 GENERAL

In a previous effort, we evaluated dynamic pressure impulse, Iq, for
ideal/near-ideal blast waves by showing a correlation with wheeled vehicle
(1/4 ton trucks) displacement (Reference 1). We found that there is a one-
to-one correspondence between Iq and vehicle displacement and concluded that
from known vehicle displacements the dynamic pressure impulse can be esti-
mated with reasonable accuracy.

Here, we present the results for evaluating Iq, not only for ideal/near-
ideal blast waves but also for Iq for non-ideal blast waves. We combined the
data from our first evaluation with 1/4 ton truck exposures to non-ideal
blast waves along with that of 2-1/2 ton truck exposures to both non-ideal and

ideal/near-ideal blast environments.
Additionally, we evaluated damage to wheeled vehicles as a function of

vehicle displacement. For a given displacement, the damage can then be corre-

by simply using Sachs scaling. The damage itself as a function of range, how-
ever, cannot be scaled by use of a constant exponent of the-weapon yield such
as w°-4. The exponent of W will vary depending on the burst height of the
weapon.

To keep this report from being too cumbersome we do not include the
damage versus displacement here. Instead another report was prepared to
present this information. We also feel that in this way the report on Iq will
be of special interest to groups dealing with airblast phenomena while the
report on damage will be of special interest to groups dealing with targeting
O and vuinerability/survivability. This report on Iq presents the procedures
for correlating Iq versus displacement, the effect of surface conditions on
Iq, the construction of Iq versus range curves as well as the construction of
HOB charts for iso-Iq.

1.2 OBJECTIVES
Our main objective was the evaluation of dynamic pressure impulse for

ideal/near-ideal and non-ideal blast waves using wheeled vehicle response
along with gage measurements. Other objectives were to correlate damage
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with vehicle response, establish the influence of diffraction flow on dis-
placement and evaluate the peak overpressure effects on damage to wheeled
vehicles.

1.3 BACKGROUND

The exposure of wheeled vehizles (drag-type targets) on past nuclear and
HE tests served several purposes such as troop indoctrination, damage evalua-
tion and verification of damage predictions. Different types of vehicles were
exposed under a variety of conditions. The vehicles included 1/4 ton, 3/4 ton,
2-1/2 ton, and 5 ton trucks. The majority of vehicles exposed were 1/4 ton
trucks and on several occasions they were used as gages to evaluate the rela-
tive effects of nuclear blast on drag-type targets. The information on
wheeled vehicle exposures has been compiled and reevaluated. A report has
been prepared which covers the exposure conditions, vehicle damage, and dis-
placements (Reference 2).

Damage to and displacements of drag-type targets under some nuclear burst
conditions was far in excess of damage and displacements for other nuclear
burst conditions. This was dramatically demonstrated on events of Encore-9
and Grable-10, Upshot/Knothole. The maximum damage of vehicles (1/4 ton
trucks) exposed on Encore-9.was M.6 (Moderate II) and the maximum displace-
ment was about 11 metres. On Grable-10, however, the 1/4 ton trucks were
completely dismembered and displacement of parts (engine, chassis, wheels)
was greater than 300 metres. The exposure of vehicles on these two events
was based on peux overpressure values and it was assumed that the other blast
parameters could be calculated by using the Rankine-Hugoniot relations. But
the pressure waveforms measured on Encore-9 (Mach Region) wera primarily
steep-rising shock fronts (near-ideal), while the pressure waveforms on
Grable-10 were somewhat distorted showing rounded fronts with high frequency
oscillatiuns and in some cases secondary veaks were observed (non-ideal).
There was n. cor-elation between overpressure and dynamic pressure on Grable-
10. Thic difference ‘n damage and displa:ement was then attributed to the
precursur dust-laden blast wave formed on Grabie-10. The dust momentum
increased the total loads on the vehicles. <imilar results were obtained
on nther precursor-forming events. Tius one of the criteria used for dis-
tinguishing between ideal/near-iueal and non-ideal blast environments was the
wavefoim — steep rising shock front for ideal/near-ideal and a rounded front
with secondary reaks for non-ideal. The non-ideai could be further divided

2
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into 1ight dust and heavy dust blast environment. One of the measures for
this was that dynamic pressures were greater on heavy dust events than on
1ight dust environments.

When vehicles were used as gages they were located adjacent to blast
1ine instrumentation which consisted of overpressure, pitot-tube, differential
pressure, total head, GREG and SNOB gages. In a precursor dust-laden blast
environment the dust registry coefficient was known for the GREG and SNOB
gages only. Many of the measurements for deriving dynamic pressure versus
time in this sort of an environment were suspect. A procedure was developed
to try to retrieve the suspect data (Reference 3). The technique for retriev-
ing the suspect data was based on the comparison of measured data from two
gages — one gage with a known registry coefficient and the other with an
unknown coefficient. This procedure was not successful since there were a
1imited number of measurements with gages having a known registry coefficient.
Wheeled vehicles on the other hand responded by translational and rotational
motion to the actual blast load environments. The displacement of the vehicle
should, therefore, be 2 measure of the blast loads acting on the target.

Past studies have resulted in calculational capability to compute
rotational and translational motion of drag-type targets (References 4 and 5).
The technique of Reference 4 calculates either translational motion or rota-
tional motion. The technique of Reference 5 which is a multidegree-of-freedom
code calculates both translation and rotation. However, for both techniques
the calcula*tion for rotation is limited up to the point of overturning. The
important blast parameter considered * . both techniques is dynamic pressure
impulse. For fractional KT weapons, diffraction loading due to overpressure
influences the motion. These calculations provide an insight for proper
interpretation of the vehicle response to the blast loads.

In our initial evaluation, we were concerned about establishing the
values of dynamic pressure impulse for the ideal/near-ideal blast waves to
be correlated with vehicle displacements. Two approaches were used to
establish these values. One approach was based on averaging the measured
overpressure and positive phase duration as a function of range and then
combining this with the Rankine-Hugoniot relations together with empirically
derived equations to compute the peak dynamic pressures and the peak dynamic
pressure impulse, respectively. Another approach was the use of theoretical
and analytical computations for static pressure impulse, Ip, and Iq combined

3
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with the average values of measured peak overpressure, Py, and static pressure
impulse. The latter approach, which was the method selected, permitted the
construction of a set of curves showing the ratio of Ip/Iq versus Pg for
several burst heights. The Iq was determined using the average measured values
of ip and Pg on each event. Details of this approach are given in Appendix A.
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SECTION 2
(U) BLAST MEASUREMENTS AND VEHTIC'.E EXPOSURES - NUCLEAR AND HE EVENTS

2.1 (U)  TECHNICAL DATA RASE

2.1.° (U) Opera.ions/Cvents
(u) Over 400 vehicles wer: expdseu On 19 nuclear and HE events. Blast
measurements of one type or anothe* were also obtained from these events. Of
the more than 400 vehicles exposed, only 167 were used for correlation with
Iq. The vehicles excluded for this correlation were those located on the
asphalt and water surfaces and those located in the Desert Rock sector, and
also, vehicles which were constrained to rotate without sliding. Blast over-
pressure measurements were obtained on the majority of these events. Only on
two events, Encore-9 and Wasp-1, were the dynamic pressure measurements un-
available.
(V) The 1isting of the Operation/Events are given in Table 2.1. The
information provided includes the yield, actual burst height, scaled burst
height, scaling factors, and ambient environment. Ten of these events are

"additions to the events used in our first evaluation. These added events all ’

took place at Nevada Test Site; most produced strong precursor actions (non-
ideal blast waves). The nomenclature given for each event refers to the code
name and to the shot number for that Operation.

2.1.2 (U) Blast Wave and Vehicle Displacement Collations
(U) The nuclear and HE events, designated as ideal/near-ideal blast
waves were the assigned nine events (first evaluation) and the additional two
events: Wasp-1 and Wasp Prime-9. Our initial guidance for cutegorizing the
precursor nuclear events was based on the information given in Reference 6,
j.e., whether they were 1ight dust-laden or heavy dust-laden blast waves.
The sorting of events into one of the three categories is as follows:

Ideal/Near-Ideal Blast Waves

Upshot/Knothole: Encore-9

Castle: Koon-3 and Nectar-6

Teapot: Wasp-1 and Wasp Prime-9

Redwing: Lacrosse-1, Zuni-3 and Yuma-4

HE: Canadian 20-Ton, 100-Ton and Dice Throw
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